Kamis, 26 April 2018

Arsitektur Game Engine



Arsitektur Game Engine

     Game engine adalah sebuah sistem perangkat lunak (software) yang dirancang untuk pembuatan dan pengembangan video game. Game engine memberikan kemudahan dalam menciptakan konsep sebuah game yang akan di buat. Mulai dari sistem rendering, physics, arsitektur, suara, scripting, A.I, dan bahkan sistem networking. Tujuan digunakannya game engine adalah untuk mempermudah pembuatan bagian‐bagian tertentu dalam game, membagi‐bagi pengembangan game menjadi modul‐modul tertentu, dan memudahkan kolaborasi antar pihak.

1.  Game Engine

Perangkat lunak yang dapat membuat atau mengembangkan sebuah game yang ingin kita buat dapat disebut game engine. Game ini dapat berbagai genre game yang dapat Anda buat seperti Action, shooter, adventura dan sejenisnya. Game engine menyediakan seperangkat alat pengembangan visual di samping komponen software digunakan kembali. Alat-alat ini umumnya diberikan dalam suatu lingkungan pengembangan terpadu untuk mengaktifkan disederhanakan, perkembangan pesat dari permainan dengan cara data-driven. 

Mesin pengembang Game upaya untuk “pra-menciptakan roda” dengan mengembangkan suite perangkat lunak kuat yang mencakup banyak unsur pengembang game mungkin perlu untuk membangun sebuah permainan. Kebanyakan mesin permainan suite menyediakan fasilitas yang memudahkan pengembangan, seperti grafik, suara, fisika dan fungsi AI. Mesin permainan ini kadang-kadang disebut “middleware” karena, seperti dengan istilah naluri bisnis, mereka menyediakan sebuah platform perangkat lunak yang fleksibel dan dapat digunakan kembali yang menyediakan semua fungsionalitas inti yang dibutuhkan, langsung dari kotak, untuk mengembangkan sebuah aplikasi permainan sambil mengurangi biaya , kompleksitas, dan waktu-ke-pasar-semua faktor penting dalam industri video game yang sangat kompetitif. Gamebryo dan RenderWare adalah seperti program middleware banyak digunakan. 

2. Tipe‐tipe Game Engine
Game memiliki berbagai macam jenis dan ditujukan untuk berbagai kemampuan pemrograman. Berikut ini adalah beberapa tipe dari game engine.
  • Roll Your‐Game Engine
Game engine tipe ini lebih disukai karena selain gratis, game engine ini juga memperbolehkan para developer lebih fleksibel dalam mengitegrasikan komponen yang diinginkan untuk dibentuk sebagai game engine mereka sendiri. Namun kelemahan dari tipe game engine ini banyak engine yang dibuat dengan cara semacam ini malah menyerang balik developernya.
  • Mostly‐Ready‐Game Engine
Engine ini biasanya sudah menyediakan semuanya begitu diberikan pada developer/programmer. Semuanya termasuk conth GUI, phisycs, libraries models, texture dan lain‐lain. Banyak dari mereka yang sudah benar‐benar matang, sehingga dapat langsung digunakan untuk scripting sejak hari pertama. Game engine semacam ini memiliki beberapa batasan, terutama jika dibandingkan dengan game engine sebelumnya yang benar‐benar terbuka lebar. Hal ini ditujukan agar tidak banyak terjadi error yang mungkin terjadi setelah sebuah game yang menggunakan engine ini dirilis dan masih memungkinkan game engine‐nya tersebut untuk mengoptimalkan kinerja game‐nya. Dengan hal ini dapat menghemat waktu dan biaya dari para developer game.
  • Point‐and‐Click Engine
Engine ini merupakan engine yang sangat dibatasi, tetapi dibuat dengan sangat user friendly. Anda bahkan bisa mulai membuat game sendiri menggunakan engine seperti GameMaker, Torque Game Builder dan Unity3D. Dengan sedikit memanfaatkan coding. Kekurangannya terletak pada terbatasnya jenis interaksi yang bisa dilakukan dan biasanya hal ini mencakup semuanya, mulai dari grafis hingga tata suara. Tapi bukan berarti game engine jenis ini tidak berguna, bagi developer cerdas dan memiliki kreativitas tinggi, game engine seperti ini bisa dirubah menjadi sebuah game menyenangkan, seperti Flow. Game engine ini memang ditujukan bagi developer yang ingin menyingkat waktu pemrogramman dan merilis game‐game mereka secepatnya.
3. Elemen pada Game Engine
Seperti halnya perangkat lunak lainnya, pada geme engine juga terdapat beberapa elemen diantaranya :
  • Tools / Data
Dalam pengembangan game, dibutuhkan data yang tidak semudah menuliskan text files. Dalam pengembangan game, paling tidak dibutuhkan beberapa tools seperti 3d model editor, level editor dan graphics programs. Bahkan jika diperlukan, seringkali kita mengembangkan game engine tersebut dengan menambahkan beberapa code dan fitur yang diperlukan.
  • System
System adalah bagian dari game engine yang berfungsi untuk melakukan komunikasi dengan hardware yang berada di dalam mesin. Jika game engine sudah dibuat dengan baik maka system ini adalah satu‐satunya bagian yang membutuhkan perubahan yang cukup banyak apabila dilakukan implementasi pada platform yang berbeda. Di dalam system sendiri terdapat beberapa sub system yaitu graphics, input, sound, timer, configuration. System sendiri bertanggung jawab untuk melakukan inisialisasi, update dan mematikan sub system yang terdapat di dalamnya.
  • Console
Dengan menambahkan console, kita dapat merubah setting game dan setting game engine di dalam game tanpa perlu melakukan restart pada game tersebut. Console sendiri lebih sering digunakan dalam proses debugging. Apabila game engine tersebut mengalami error kita tinggal mengoutputkan error message tersebut ke dalam console tanpa harus melakukan restart. Console sendiri dapat dihidupkan dan dimatikan sesuai keinginan.
  • Support
Support adalah bagian yang paling sering digunakan oleh system di dalam game engine. Support sendiri berisi rumus‐rumus matematika yang biasa digunakan seperti : vector, matrix, memory manager, file loader merupakan dasar dari game engine dan hampir digunakan semua projek game engine.
  • Renderer / Engine Core
Pada game engine, engine core / renderer terdiri dari beberapa sub yaitu visibility, Collision Detection dan Response, Camera, Static Geometry, Dynamic Geometry, Particle Systems, Billboarding, Meshes, Skybox, Lighting, Fogging, Vertex Shading, dan Output.
  • Game Interface
Game interface sendiri merupakan layer diantara game engine dan game itu sendiri. Berfungsi sebagai control yang bertujuan untuk memberikan interface apabila di dalam game engine tersebut terdapat fungsi fungsi yang bersifat dinamis sehingga memudahkan untuk mengembangkan game tersebut.
  • The Game
Merupakan inti dari penggunaan game engine sendiri, sehingga user dapat mengembangkan game tersebut sesuai dengan yang diinginkan.

Interaksi fisik dalam teknologi game

            Interaksi menurut Hormans adalah suatu kejadian ketika aktivitas atau sentimen yang dilakukan oleh seseorang terhadap individu lain diberi ganjaran (reward) atau hukuman (punishment) dengan menggunakan suatu aktivitas atau sentimen oleh individu lain yang menjadi pasangannya. Konsep pengertian interaksi yang dikemukakan oleh Hormans yaitu suatu tindakan yang dilakukan oleh seseorang dalam suatu interaksi merupakan suatu stimulus bagi tindakan individu lain yang menjadi pasangannya.

            interaksi fisik ialah salah satu bentuk interaksi yang terjadi jika ada dua orang atau lebih melakukan kontak dengan menggunakan bahasa-bahasa tubuh. Contoh interaksi ini : posisi tubuh, ekspresi wajah, gerak-gerik tubuh dan kontak mata. Dalam lingkungan game, interaksi fisik dapat dimaksud dengan menyerap pengertian diatas, yaitu menjadi interaksi fisik ialah salah satu bentuk interaksi yang terjadi jika ada dua objek atau lebih melakukan kontak. Kontak yang terjadi antara objek – objek tersebut umumnya adalah collision atau tabrakan.



Lalu, bagaimana objek digital tersebut dapat memahami bahwa objek – objek tersebut (akan) mengalami collision?

 Collision Detection

Collision Detection dibutuhkan untuk memastikan tidak ada objek yang saling menembus. Pada dasarnya, objek baik 2 dimensi maupun 3 dimensi pada Teknologi Game dan digital, secara umumnya objek – objek tersebut bukanlah objek yang memiliki kemampuan fisik, atau secara lain objek tersebut hanyalah susunan dari titik, garis, dan penampang yang terhubung satu sama lain, dan bisa dianggap bahwa objek tersebut hanyalah sebatas bentuk, tanpa memiliki kemampuan.

 

Agar objek – objek tersebut dapat mensimulasikan kemampuan fisik, objek – objek tersebut harus diberikan pemahaman dengan menggunakan aljabar linear dan komputasi geometri.

Komputasi geometri tersebut digunakan untuk memberikan batas pada objek. Walaupun objek tersebut terlihat sudah memiliki penampang, sebenarnya penampang tersebut bukanlah batasan dari sisi terluar objek tersebut. Oleh karena itu, komputasi geometri dibuat dengan parameter bentuk dan volume dari objek tersebut. Umumnya, bentuk batasan ini disebut bounding box ( batas kotak ).Aljabar linear digunakan untuk memberitahukan bahwa, ketika batas tersebut terletak pada koordinat yang sama atau berpotongan dengan batas objek lain, maka objek – objek tersebut mensimulasikan tabrakan.

Pada awalnya, penggunaan algoritma untuk pendeteksian tabrakan ini bekerja dengan cara mudah, yaitu dengan cara mengecek apakah penampang dari batas objek A dengan penampang dari batas objek B akan saling berpotongan. Tentu saja hal tersebut akan bekerja. Tapi, bayangkan apabila objek yang digunakan sangat banyak. Setiap penampang dari batas objek A = [a1, a2, …, an] akan melakukan pengecekan sampai ke penampang dari batas objek N = [n1, n2, …, nn]. Mungkin algoritma ini akan bekerja dengan baik apabila hanya terdapat 2 objek dalam lingkungan tersebut.

Dalam perkembangan pendeteksian tabrakan, konfigurasi kemampuan fisik dari satu pergerakan ke pergerakan selanjutnya hanya berubah sedikit. Banyak objek – objek yang tidak bergerak sama sekali. Algoritma telah di desain sehingga perhitungan telah selesai untuk menentukan bahwa pergerakan terdahulu dapat digunakan kembali untuk pergerakan di masa kini, yang menghasilkan perhitungan selesai dengan lebih cepat. Perkembangan tersebut tujuan nya hanya untuk mencari dan menentukan pasangan – pasangan dari objek – objek yang mungkin berpotongan. Pasangan – pasangan tersebut akan menganalisis pergerakan kedepannya.

Logikanya adalah setiap kotak direpresentasikan dengan tiga bentuk interval ( misalkan, sebuah kotak akan direpresentasikan dengan I1 x I2 x I3 = [a1, b1] x [a2, b2] x [a3, b3] ). Jika terdapat 2 kotak ( dengan bounding box nya masing – masing ) I1 x I2 x I3 dan J1 x J2 x J3 akan berpotongan jika, dan hanya jika, I1 berpotongan dengan J1, dan seterusnya. Maka, pada pergerakan tersebut dan untuk ke pergerakan selanjutnya, Ik dan Jk berpotongan, sehingga hal tersebut akan sama untuk pergerakan lainnya. Sebaliknya, jika mereka tidak berpotongan pada pergerakan sebelumnya, maka pergerakan mereka tidak akan berpotongan. Sehingga untuk mengurangi masalah tersebut, dibuatkan tiga daftar interval ( satu untuk setiap sumbu, X,Y, dan Z). Maka dari itu didapat matriks n x n, M = (mij) dengan isi nol dan satu: mij adalah 1 jika interval i dan j berpotongan, dan 0 jika mereka tidak berpotongan.

Spatial Partitioning

Algoritma alternatif di kelompokkan dibawah spatial partitioning, termasuk octress, binary space partitioning ( BSP Trees ), dan yang lainnya yang memiliki pendekatan yang serupa. Hal ini digunakan dengan membagikan sebuah wilayah menjadi beberapa bagian, dan jika dua objek tidak terdapat pada bagian yang sama, maka objek – objek tersebut tidak perlu dicek apakah akan berpotongan. BSP Trees bisa memperhitungkan terlebih dahulu, yang mana pendekatan tersebut sangat cocok untuk didefinisikan di dalam objek berbentuk tembok, dan objek halangan yang tetap dalam sebuah game. Algoritma tersebut secara umum lebih dulu diketahu daripada algoritma yang telah dijabarkan sebelumnya.


User interface pada game

Graphical User Interface(GUI)
     GUI adalah tipe antarmuka yang digunakan oleh pengguna untuk berinteraksi dengan sistem operasi melalui gambar-gambar grafik, ikon, menu, dan menggunakan perangkat penunjuk ( pointing device) seperti mouse atau track ball. Elemen-elemen utama dari GUI bisa diringkas dalam konsep WIMP ( window, icon, menu, pointing device).

Terdapat beberapa macam fitur yang terdapat pada antarmuka pengguna telematika. Fitur-fitur itu antara lain:
1)      Head Up Display System


Head Up Display (HUD) merupakan sebuah tampilan transparan yang menampilkan data tanpa mengharuskan penggunanya untuk melihat ke arah yang lain dari sudut pandang biasanya. Asal nama dari alat ini yaitu pengguna dapat melihat informasi dengan kepala yang terangkat (head up) dan melihat ke arah depan daripada melihat ke arah bawah bagian instrumen. Walaupun HUD dibuat untuk kepentingan penerbangan militer, sekarang HUD telah digunakan pada penerbangan sipil, kendaraang bermotor dan aplikasi lainnya.

2)      Tangible User Interface


     Tangible User Interface, yang disingkat TUI, adalah antarmuka dimana seseorang dapat berinteraksi dengan informasi digital lewat lingkungan fisik. Nama inisial Graspable User Interface, sudah tidak lagi digunakan. Salah satu perintis TUI ialah Hiroshi Ishii, seorang profesor di Laboratorium Media MIT yang memimpin Tangible Media Group. Pandangan istimewanya untuk tangible UI disebut tangible bits, yaitu memberikan bentuk fisik kepada informasi digital sehingga membuat bit dapat dimanipulasi dan diamati secara langsung.

3)      Computer Vision


 
     
Computer Vision (komputer visi) merupakan ilmu pengetahuan dan teknologi dari mesin yang melihat. Dalam aturan pengetahuan, komputer visi berhubungan dengan teori yang digunakan untuk membangun sistem kecerdasan buatan yang membutuhkan informasi dari citra (gambar). Data citranya dapat dalam berbagai bentuk, misalnya urutan video, pandangan deri beberapa kamera, data multi dimensi yang di dapat dari hasil pemindaian medis.

Dalam desain antarmuka game terdapat beberapa elemen yang diantaranya adalah :
1)      Diegetic
Elemen user interface yang diegetik ada dalam dunia permainan (fiksi dan geometris) sehingga pemain dan avatar dapat berinteraksi dengan mereka melalui visual, audible atau haptic. Elemen UI diegetik yang dieksekusi dengan baik dapat meningkatkan pengalaman narasi untuk pemain, memberikan pengalaman yang lebih mendalam dan terintegrasi. Salah satu game yang mengimplementasikan elemen diegetic adalah Assassin’s Creed. Assassin’s Creed berhasil menggunakan banyak pola diegetic meskipun itu diatur dalam dunia sejarah karena pemain pemain menggunakan sistem virtual reality di masa depan. Jadi cerita sebenarnya futuristik daripada sejarah.

2)      Meta
Gambaran yang bisa muncul dalam dunia game, namun tidak selalu divisualisasikan spasial untuk pemain.Contoh yang paling jelas adalah efek ditampilkan di layar, seperti percikan darah pada kamera untuk menunjukkan kerusakan. Contoh: Grand Theft Auto 4 Berinteraksi dengan telepon di Grand Theft Auto 4 adalah contoh menarik. Ini meniru interaksi dunia nyata – Anda mendengar dering telepon dan ada penundaan sebelum karakter dan pemain menjawabnya. Elemen UI sebenarnya itu sendiri muncul pada pesawat hub 2D, jadi itu benar-benar elemen Meta, meskipun awal interaksi yang diegetik.

3)      Spatial
Elemen User Interface yang disajikan dalam ruang permainan 3D dengan atau tanpa suatu entitas dari dunia permainan yang sebenarnya (diegetik atau non-diegetik).
Fable 3 adalah contoh di mana unsur-unsur spatial yang digunakan untuk memberikan informasi lebih kepada pemain dan mencegah mereka dari melompat ke layar peta. Jejak bersinar hampir cocok dalam fiksi mengingat kualitas estetika ajaib itu tapi karakter tidak dimaksudkan untuk menyadari hal itu. Ini memandu pemain ke tujuan berikutnya.

4)      Non-Diagetic
Antarmuka yang diberikan di luar dunia game, hanya terlihat dan terdengar ke pemain di dunia nyata desain interface ini semuanya mengunakan visual heads-up display (HUD). semua menjadi sangat nyaman dengan penggunaan heads-up display (HUD) dalam permainan. Sistem ini memberikan informasi penting dengan cara yang cukup sederhana. Jika dilakukan dengan benar pemain bahkan tidak tahu itu ada. Mass Effect 3 menggunakan banyak Non-diegetik elemen UI untuk menginformasikan pemain senjata karakter dipilih dan kekuasaan – antara lain. Mengingat pengaturan futuristik itu saya tidak bisa membantu untuk berpikir jika beberapa informasi ini bisa telah terintegrasi ke dalam dunia game, narasi, atau bahkan keduanya.

Sumber refrensi :